Robotic Thymectomy

Bernard J. Park, M.D.
Deputy Chief of Clinical Affairs
Thoracic Service
Robotic Thymectomy

Disclosures

• Bard: Speaker’s bureau
• Baxter: Consulting
Robotic Thymectomy
Standard Approach
Robotic Thymectomy

VATS Thymectomy

- Several published series for myasthenia gravis
- Some series for deliberate treatment of thymoma (10)
- Variable approaches: left, right, bilateral
Robotic Thymectomy

VATS Thymectomy

• Recent series of 119 patients over 10-year period with 58 thymomas (32 associated with MG)
• Right-sided approach, 4 incisions

Thirugnanam A and Lin S. Asian Cardiovas Thorac Ann 2010;18
Robotic Thymectomy
VATS Thymectomy

- Mean thymoma size 50 mm (10-90 mm)
- 25 Stage I, 25 Stage II, 7 Stage III, 1 Stage IVA
- 2 local recurrences (1 Stage I, 1 Stage 3)
- No deaths with mean f/u 4.9 years

Thirugnanam A and Lin S. Asian Cardiovas Thorac Ann
Robotic Thymectomy

- 3-arm approach
- Camera: 4-5th ICS anterior axillary line
- Left arm: inframammary fold, mid-clavicular line
- Right arm: 2-3rd ICS anterior axillary line
- Left or right
Robotic Thymectomy

Robotic Thymectomy
Robotic Thymectomy

- Total of 43 published articles
- Early experience focused on thymectomy for myasthenia gravis
- Increasing studies focusing on role of robotics in primary treatment of thymoma (5)
Robotic Thymectomy

Thymoma

<table>
<thead>
<tr>
<th>Author</th>
<th>Patients (N)</th>
<th>SA</th>
<th>Masaoka stage I/II</th>
<th>TS (cm)</th>
<th>5-year survival (%)</th>
<th>FU (months)</th>
<th>RR (%)</th>
<th>OC (%)</th>
<th>OT (min)</th>
<th>POS (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roviaro et al.</td>
<td>22</td>
<td>uVATS</td>
<td>22</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4.5</td>
<td>4.5</td>
<td>75*</td>
<td>6*</td>
</tr>
<tr>
<td>Cheng et al.</td>
<td>44</td>
<td>uVATS</td>
<td>27/17</td>
<td>7.7*</td>
<td>100</td>
<td>34.6*</td>
<td>0</td>
<td>0</td>
<td>194*</td>
<td>7.6*</td>
</tr>
<tr>
<td>Odaka et al.</td>
<td>22</td>
<td>uVATS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21.6*</td>
<td>0</td>
<td>0</td>
<td>194*</td>
<td>4.6*</td>
</tr>
<tr>
<td>Agasthian et al.</td>
<td>50</td>
<td>uVATS</td>
<td>25/25</td>
<td>5*</td>
<td>100</td>
<td>58*</td>
<td>2</td>
<td>0</td>
<td>150*</td>
<td>5*</td>
</tr>
<tr>
<td>Pennathur et al.</td>
<td>18</td>
<td>bVATS</td>
<td>5/13</td>
<td>3.5*</td>
<td>100</td>
<td>27**</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>2.9*</td>
</tr>
<tr>
<td>Takeo et al.</td>
<td>34</td>
<td>bVATS</td>
<td>15/19</td>
<td>5.2*</td>
<td>100</td>
<td>65*</td>
<td>2.8</td>
<td>0</td>
<td>219*</td>
<td>10.5*</td>
</tr>
<tr>
<td>Kimura et al.</td>
<td>45</td>
<td>uVATS</td>
<td>41/4</td>
<td>4.8*</td>
<td>100</td>
<td>–</td>
<td>6.7</td>
<td>0</td>
<td>197*</td>
<td>14*</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>76</td>
<td>uVATS</td>
<td>57/19</td>
<td>9.2*</td>
<td>100</td>
<td>61.9*</td>
<td>2.6</td>
<td>1.3</td>
<td>141.7*</td>
<td>7.1*</td>
</tr>
<tr>
<td>Ye et al.</td>
<td>125</td>
<td>uVATS</td>
<td>80/45</td>
<td>3.2*</td>
<td>–</td>
<td>41**</td>
<td>0.8</td>
<td>3.2</td>
<td>170**</td>
<td>8**</td>
</tr>
<tr>
<td>Sakamaki et al.</td>
<td>71</td>
<td>uVATS</td>
<td>40/31</td>
<td>3.5**</td>
<td>97</td>
<td>48**</td>
<td>1.4</td>
<td>5.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mussi et al.</td>
<td>13</td>
<td>robotic</td>
<td>7/6</td>
<td>3.3*</td>
<td>100</td>
<td>14.5**</td>
<td>0</td>
<td>7.7</td>
<td>139*</td>
<td>4*</td>
</tr>
<tr>
<td>Marulli et al.</td>
<td>79</td>
<td>robotic</td>
<td>30/49</td>
<td>3.7*</td>
<td>90</td>
<td>51.7*</td>
<td>1.3</td>
<td>1.3</td>
<td>165*</td>
<td>4.4*</td>
</tr>
<tr>
<td>Ye et al.</td>
<td>23</td>
<td>robotic</td>
<td>21/2</td>
<td>2.9*</td>
<td>100</td>
<td>16.9*</td>
<td>0</td>
<td>0</td>
<td>97*</td>
<td>3.7*</td>
</tr>
<tr>
<td>Keijzers et al.</td>
<td>37</td>
<td>robotic</td>
<td>20/13</td>
<td>5.1*</td>
<td>100</td>
<td>36**</td>
<td>2.7</td>
<td>13.5</td>
<td>149*</td>
<td>3**</td>
</tr>
<tr>
<td>Present series</td>
<td>134</td>
<td>robotic</td>
<td>46/71</td>
<td>4.4*</td>
<td>97</td>
<td>48*</td>
<td>0.7</td>
<td>8.9</td>
<td>146*</td>
<td>4**</td>
</tr>
</tbody>
</table>

SA, surgical access; bVATS, bilateral video-assisted thoracic surgery; uVATS, unilateral video-assisted thoracic surgery; TS, tumor size; FU, median follow-up; RR, recurrence rate; OC, open conversion; OT, operative time; POS, post-operative length of stay. *, mean value; **, median value.
Robotic Thymectomy

Thymoma

- Largest series from Marulli et al on multi-institutional European experience
- 134 patients undergoing robotic thymectomy for thymoma
- 38% left; 59.8% right; 2.2% bilateral
- 52% with associated MG
- 97% 5-year survival

Robotic Thymectomy

Locally Advanced Thymomma
Robotic Thymectomy

Summary

- Existing robotic technology an ideal approach to mediastinal disease
- Major advantage to robotic approach for management of the mediastinum in lung cancer
- Robotics should be the standard for total thymectomy for MG and isolated thymoma
Thank You!