Robotic Lobectomy

Bernard J. Park, M.D.
Deputy Chief of Thoracic Surgery
Robotic Thoracic Surgery

Disclosures

- Bard: Speaker
- Baxter: Consulting
Robotic Thoracic Surgery

Consensus VATS Technique

- CALGB 39802: multi-institutional registry study to assess feasibility and establish uniform criteria for VATS lobectomy
- Standardized definition: 3-incision technique with access incision no larger than 8 cm, videoscopic guidance, no rib spreading and traditional hilar dissection
- 127 patients: perioperative mortality 2.7%, grade 3 or higher morbidity 7.4%

Robotic Thoracic Surgery
Status of VATS in U.S.

• Despite evidence of patient benefit and acceptable oncologic outcomes of VATS lobectomy in early lung cancer...

• Between 1999-2006, only 20% of all lobectomies done in the U.S. was by VATS*

• Utilization was increasing (32% in 2006)

Robotic Thoracic Surgery

Status of VATS in U.S.

- All lung resections done in STS database between 2000 - 2010
- 12,255 (94.5%) patients underwent lobectomy (n = 7877 thoracotomy; n = 4378 VATS)
- Overall rate of VATS 35.7%, but trend toward increased

Robotic Thoracic Surgery

Status of VATS in U.S.

- Nationwide Inpatient Sample database (non-voluntary) of 13,619 patients undergoing lobectomy at non-federal facilities between 2004 - 2006
- Only 759 (5.6%) by VATS
- No difference between groups with respect to length of stay, cost, complications
- VATS 1.6 times more likely to have intraop complications

Robotic Thoracic Surgery

Why Poor Adoption of VATS?

• Wide variation in practitioners (general surgeons, cardiac surgeons)
• Not board requirement until recently
• Poor access to training, particularly post-graduate
• Higher perceived risk profile with closed chest (bleeding)
• Limited instrumentation
Robotic Thoracic Surgery

Disadvantages of VATS

- Despite high definition optics, loss of binocular vision
- Unstable camera platform
- Limited instrumentation
- Poor ergonomics
- Reliance on experienced assistants
Robotic Thoracic Surgery

Telerobotic Surgery

- 3D binocular visual system
- Wristed instrumentation
- Initial FDA-approved indication: cardiothoracic surgery
Robotic Thoracic Surgery

Initial Experience

- Started concurrently with VATS lobectomy in July 2002 at MSKCC
- Intuitive dry lab and cadaver training
- Patients consented for robot, but not on protocol
- First successful case November 2002
Robotic Thoracic Surgery

Influences
Robotic Thoracic Surgery

VATS Approach

- Thoracoscopic lobectomy with 3 – 4 non-rib-spreading incisions consistent with CALGB 39802 consensus criteria
- Robotic visual system and instrumentation employed for entire hilar and mediastinal dissection
- Systematic mediastinal lymphadenectomy
Robotic Thoracic Surgery

Technique

• 3 or 4 incisions
• 4 cm non-rib spreading utility incision
• Individual dissection and ligation of hilar structures
• Isolated lung lesions
Robotic Thoracic Surgery
Docking - Standard
Robotic Thoracic Surgery

da Vinci® S
Robotic Pulmonary Resection

Docking
Robotic Thoracic Surgery
4-arm VATS Approach

Robotic Thoracic Surgery
Total Port Technique

- 4-arm
- Robot docked over the patient’s head
- No utility incision
- CO2 insufflation
- Subdiaphragmatic removal of specimen

Robotic Pulmonary Resection

CPRL-4

- “Total port” technique
- Robot docked over the patient’s head
- View replicates classic thoracotomy view
- Five total incisions

Robotic Pulmonary Resection

观 from above after trocar placement for a CPRL-4, right-sided operation
Robotic Pulmonary Resection

Long Term Results

Robotic lobectomy for non–small cell lung cancer (NSCLC):
Long-term oncologic results

Bernard J. Park, MD, a Franca Melfi, MD, b Alfredo Mussi, MD, b Patrick Maisonneuve, DipEng, c Lorenzo Spaggiari, MD, d Ruy Kuenzer Caetano Da Silva, MD, e and Giulia Veronesi, MD e

Robotic Thoracic Surgery

daVinci® Si
Robotic Thoracic Surgery
4-arm Si
Robotic Thoracic Surgery

4-arm Si
Robotic Thoracic Surgery

daVinci® Xi
Robotic Thoracic Surgery
Xi System Advances

- Rotating boom (270 degrees) allows side-docking in all cases
- Facilitated docking process
 - Laser guidance to camera port
 - Targeting feature
- Improved cannula mounting
- 8 mm camera may be placed in any arm
- Enhanced patient clearance features of the arms to eliminate external collisions
- Vascular stapler
Xi Incision Strategy
Robotic Thoracic Surgery

Robotic Staplers

- Prior to Si system no robotic staplers commercially available.
- October 2012 Si stapler 510K cleared.
- Green (45 mm) and blue (35 mm) loads FDA approved for Gyn, General and GU ONLY. NO THORACIC!
- April 2014: DaVinci Xi system is released.
Robotic Thoracic Surgeon

Robotic Staplers

• July 2014: Green, blue and white (vascular) Xi stapler loads FDA-approved – thoracic indication included

• April 2015: Xi vascular stapler released for thoracic indication to a limited (8) number of centers

• Current: All stapler loads available on all Xi systems

• >3000 vascular load firings to date
Robotic Thoracic Surgery

Steps for Firing Stapler
PORT CONSIDERATIONS FOR ROBOTIC STAPLER
Robotic Thoracic Surgery

Stapling Port
Robotic Thoracic Surgery

RUL truncus branches
Robotic Thoracic Surgery
Alternatives – Telelap ALF-X (Sofar)
Robotic Thoracic Surgery Alternatives – Sport (Titan)
Robotic Thoracic Surgery

Limitations of Robotics

• No tactile feedback
• Camera view more magnified than standard thoracoscope – less global perspective
• Arms are in a fixed location
• Learning curve
• Operating surgeon not at the bedside
• Large purchase cost of the system = ACCESS

Memorial Sloan Kettering Cancer Center
Robotic Thoracic Surgery

Unresolved Issues

- Influence of bundled payments
- Potential for decreased robotic costs – alternative systems, influence of competition
- Global utilization
- ??? Prospective trials
Robotic Thoracic Surgery

Conclusions

• There are technologically superior aspects of robotics that benefit the surgeon
• Perioperative outcomes of VATS and robotic pulmonary resection are similar – patient benefits are less clear
• The technological advantages of robotics MAY allow more complex cases to be performed minimally invasively more easily than by VATS alone
• Cost (Access) remains a significant issue/barrier
Thank You!