Diabetes and Inflammasomes in the Bladder

J Todd Purves MD, PhD
Duke University Medical Center
Division of Urology

Disclosures: None
Introduction

• Diabetic Bladder Dysfunction (DBD) is the most common complication seen in diabetic patients.

• DBD is a progressive complication
 – Early DBD = irritative voiding symptoms
 (diminished sensation, frequency, urge incontinence)
 – Chronic DBD = decompensated bladder
 (insensate bladder, poor compliance, overflow incontinence)
Endocrine referral-DONE!!(?)

- Normalize blood sugars; stop diuresis
- 58% of patients achieve ADA goals\(^1\)
- DCCT found strict glycemic control decreased retinopathy, nephropathy. DBD not so much! \(^2,3,4\)
- What else can we do?

\(^2\) Genuth S Endocr Pract 2006; 12 Suppl 1:34-41
\(^3\) Sarma AV et al. Urology 2009; 73(6): 1203-9
Bladder Damage from Diabetes

- Neuropathy
- Smooth muscle dysfunction
- Urothelial (barrier) dysfunction
DBD as manifestation of Peripheral Neuropathy

- **PN correlates with OAB in diabetic women**

<table>
<thead>
<tr>
<th>Variable</th>
<th>OAB syndrome</th>
<th>Without OAB syndrome</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>26 (32.5)</td>
<td>54 (67.5)</td>
<td></td>
</tr>
<tr>
<td>Polyneuropathy</td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>With</td>
<td>22 (27.5)</td>
<td>27 (33.8)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>4 (5.0)</td>
<td>27 (33.8)</td>
<td></td>
</tr>
<tr>
<td>Retinopathy</td>
<td></td>
<td></td>
<td>0.763</td>
</tr>
<tr>
<td>With</td>
<td>5 (6.3)</td>
<td>9 (11.3)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>21 (26.3)</td>
<td>45 (56.3)</td>
<td></td>
</tr>
<tr>
<td>Nephropathy</td>
<td></td>
<td></td>
<td>0.572</td>
</tr>
<tr>
<td>With</td>
<td>7 (8.8)</td>
<td>11 (13.8)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>19 (23.8)</td>
<td>43 (53.8)</td>
<td></td>
</tr>
</tbody>
</table>

DBD as manifestation of Peripheral Neuropathy

- **PN correlates with OAB in diabetic men**

<table>
<thead>
<tr>
<th>Variable</th>
<th>OAB syndrome</th>
<th>Without OAB syndrome</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>14 (35.0)</td>
<td>26 (65.0)</td>
<td></td>
</tr>
<tr>
<td>Polyneuropathy</td>
<td></td>
<td></td>
<td>0.022*</td>
</tr>
<tr>
<td>With</td>
<td>11 (27.5)</td>
<td>10 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>3 (7.5)</td>
<td>16 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Retinopathy</td>
<td></td>
<td></td>
<td>0.115</td>
</tr>
<tr>
<td>With</td>
<td>3 (7.5)</td>
<td>1 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>11 (27.5)</td>
<td>25 (62.5)</td>
<td></td>
</tr>
<tr>
<td>Nephropathy</td>
<td></td>
<td></td>
<td>0.089</td>
</tr>
<tr>
<td>With</td>
<td>8 (20.0)</td>
<td>7 (17.5)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>6 (15.0)</td>
<td>19 (47.5)</td>
<td></td>
</tr>
</tbody>
</table>

Rodent Studies

- **Decrease in myelinated nerve density**

<table>
<thead>
<tr>
<th>Time point</th>
<th>Group</th>
<th>Muscle NF200-IR area, mm²</th>
<th>Muscle NF200-IR/muscle area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>Control</td>
<td>0.110 ± 0.013</td>
<td>0.017 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Diabetic</td>
<td>0.112 ± 0.005</td>
<td>0.013 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Diuretic</td>
<td>0.114 ± 0.023</td>
<td>0.011 ± 0.002</td>
</tr>
<tr>
<td>9 week</td>
<td>Control</td>
<td>0.129 ± 0.007</td>
<td>0.019 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Diabetic</td>
<td>0.112 ± 0.013</td>
<td>0.012 ± 0.001*</td>
</tr>
<tr>
<td></td>
<td>Diuretic</td>
<td>0.128 ± 0.013</td>
<td>0.012 ± 0.001*</td>
</tr>
<tr>
<td>20 week</td>
<td>Control</td>
<td>0.128 ± 0.001</td>
<td>0.021 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Diabetic</td>
<td>0.108 ± 0.008</td>
<td>0.010 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Diuretic</td>
<td>0.129 ± 0.004</td>
<td>0.011 ± 0.001</td>
</tr>
</tbody>
</table>

Rodent Studies

- Afferent nerve conduction velocity is decreased

DM and Smooth Muscle Dysfunction

- Smooth muscle contractility changes according to compensated versus de-compensated state

DM effects on urothelial barrier

Etiology of Diabetic Bladder Dysfunction

- Osmotic diuresis (polyuria)
- Hyperglycemia
Polyuria and hyperglycemia

- Diuresis causes bladder hypertrophy

Polyuria and hyperglycemia

- Diabetes/hyperglycemia, but not diuresis alone, leads to oxidative stress

What is the molecular mechanism?

• Brownlee’s Unified Theory

• Inflammation
Brownlee’s Unified Theory of Diabetic Complications
Inflammation

Diabetic metabolites
- uric acid
- lipids

ROS
- mitochondrial dysfunction

K+ cellular efflux

NLRP3 Activation

INFLAMMATION
The NLRP3 Inflammasome

Canonical Pathway - Activation

Activating DAMPs and PAMPS

ROS

K⁺ efflux

NLRP3 Inflammasome

NEK7

Ca²⁺

IP₃

ER

Ca²⁺

NLRP3 mediates DM complications

- Retinopathy
- Nephropathy
- Cardiomyopathy
- Neuropathy
- Endothelial dysfunction
Inflammasomes in the bladder?

- NLRP3 found in human bladder (Tschopp 2007)
- Rat urothelium (Hughes 2014)

And in the mouse!!

Wild Type

Diabetic

NLRP3
NLRP3 in urothelium
Inflammasomes and sterile cystitis

- NLRP3 mediates inflammation in cyclophosphamide induced cystitis and BOO

- NLRP3 inhibitor (glyburide) prevents inflammation→preserves tissue and function

Does NLRP3-induced inflammation lead to DBD?
Diabetic metabolites activate NLRP3
Akita Mouse Model

- Type 1 DM mouse
- Heterozygous Ins2 mutation
Materials and Methods

• Female Ins2 (Akita) mice were compared to age-matched controls for the following end-points:

 • Voiding Dysfunction: Cystometry

 • Active Caspase-1 Activity: FAM-FLICA assay
 o Surrogate for activated NLRP3 inflammasome

 • Inflammation: Evans Blue extravasation assay
DBD Occurs by Week 15 in Akita Mice

Wildtype Mouse Bladder Pressure Tracing

Diabetic Mouse Bladder Pressure Tracing
DBD Occurs by Week 15 in Akita Mice

Void Volume

- Wildtype: 160 ± 10 µL
- Diabetic: 60 ± 5 µL

Frequency

- Wildtype: 8 ± 2 voids/hr
- Diabetic: 10 ± 2 voids/hr

*Significant difference (p < 0.01)
Increased Caspase-1 Activity at 15 Weeks

Active Caspase-1

<table>
<thead>
<tr>
<th></th>
<th>Mean Fluorescence Intensity (RFUs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtype</td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td></td>
</tr>
</tbody>
</table>

Significant difference between Wildtype and Diabetic groups.
Increased Bladder Inflammation at Week 15

Evans Blue Extravasation

Concentration in Bladder (ng/mg)

Wildtype

Diabetic

*
DBD in Akita Mice

- Early DBD appears at 15 weeks in Akita mice

- Early DBD associated with
 - Inflammation
 - Activation of Caspase-1
So what happens without NLRP3?

Akita diabetic mouse with NLRP3 knocked out

Akita/NLRP3 KO
Akita/NLRP3 KO
- No change in hyperglycemia
Akita/NLRP3 KO
- DBD is attenuated

Void Volume

- NLRP3: wt KO wt KO
- Diabetic

Frequency

- Micturitions/hr

PVR

- wt KO wt KO
- Diabetic
Akita/NLRP3 KO
- Nerve density is preserved
NRP3 inflammation and DBD

High Glucose

DAMPs

NLRP3

IL-1β

Neuropathy

Smooth muscle hypertrophy

Urothelia dysfunction

DBD
NLRP3 and Neuropathy

• Rat BOO model
• BOO (pressure, stretch, hypoxia) activates NLRP3
• Decrease in bladder nerve density
• IL1β causes neuronal apoptosis
NLRP3 Mediates Denervation during BOO

Conclusion

The NLRP3/IL-1β pathway mediates denervation during BOO

Nerves

Total number of Nerves

Bladder Area

IL-1β (ng/ml)

Pelvic Ganglion Nerves

Apoptosis

Con

Nerve Density

DAMPs (ATP)

Inflammasome

Pyroptosis

Pro-IL-1β

Casp-1

Adaptor

IL-1β

Pelvic Ganglion Nerv

Control

Sham

Veh

Gly

Ana

IL-1β

Apoptosis

High pressure

Stretch

Hypoxia/reperfusion

NLR

IL-1β Induces Apoptosis in Pelvic Neurons in vitro
Future Work

• NLRP3 impact on:
 – Neuropathy
 – Smooth muscle dysfunction
 – Urothelium/barrier function

• Natural course: DM vs. DM/NLRP3^-/

• NLRP3 inhibition as adjunct to Glycemic control
Acknowledgements