Skip to main content

Impact of dual energy cardiac CT for metal artefact reduction post aortic valve replacement.

PURPOSE: Assess image quality of dual-energy (DE) and single-energy (SE) cardiac multi-detector computed tomographic (MDCT) post aortic valve replacement (AVR) on a dual source MDCT scanner. METHODS: Eighty patients with cardiac MDCT acquisitions (ECG gated, dual-source) post-surgical and transcatheter AVR were retrospectively identified. Forty DE (cohort 1) and 40 SE acquisitions (cohort 2; 100 or 120 kVp) were reviewed. Metal artefact at valve coaptation (VC) and valve insertion site (VIS), and contrast enhancement were assessed. Valve leaflet edge definition was graded on a 4-point scale by three radiologists. RESULTS: The mean percentage valve area obscured by metal artifact differed between the cohorts; cohort 1 DE blended, high keV and low keV: 14.8 %, 11.1 % and 17.8 % at VC and 16.4 %, 13 %, 20.4 % at VIS respectively. Cohort 2: 25.8 % and 33.6 % (VC and VIS); each DE reconstruction vs SE: P < 0.0001. Average contrast opacification and coefficient of variance for cohort 1: 562.9 ± 144.7, 281.1 ± 60.3 and 1132.7 ± 300.8 Hounsfield Units (HU) and 9.6 %, 10 % and 8.9 %. For cohort 2: 437.2 ± 119.2 HU and 10.8 % (P < 0.01). Average leaflet edge definition cohort 1: 2.3 ± 0.4, 2.7 ± 0.2 and 2.3 ± 0.2, and cohort 2: 2.9 ± 0.2. CONCLUSION: DE high keV renderings can result in up to 17.2 % less metal artefact compared to standard SE acquisition for cardiac CT. Contrast opacification and homogeneity is higher for DE blended and low keV renderings compared to SE acquisition with leaflet visibility preferred for low keV and blended DE renderings.

Citation: 

Schwartz, Fides Regina, Tina Tailor, Jeffrey G. Gaca, Todd Kiefer, Kevin Harrison, G Chad Hughes, Juan-Carlos Ramirez-Giraldo, Daniele Marin, and Lynne M. Hurwitz. “Impact of dual energy cardiac CT for metal artefact reduction post aortic valve replacement.” Eur J Radiol 129 (August 2020): 109135. https://doi.org/10.1016/j.ejrad.2020.109135.

Published Date: 
Saturday, August 1, 2020
Published In: 
Eur J Radiol
PMID: 
32590257